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Note 

A Numerical Aide in the Location of Few-Body Bound States 

A wide variety of methods is currently available for solving either eigenvalue 
problems or the associated conjugate eigenvalue problem [I]. These problems are 
sometimes formulated in terms of integral equations for scattering amplitudes, so 
that the bound states appear as poles in the scattering amplitude, t(E), as a 
function of the energy E [2]. Thus, the bound state problem becomes a search 
for the solutions of (t(E))-l = 0. Jarratt and Nudds [3] have discussed the useful- 
ness of rational functions in numerically solving such single-variable equations. 
These rational functions are equivalent to Padt approximants of type II, which 
are considered in a recent review of Pade approximants by Zinn-Justin [4]. The 
present work is concerned with the application of linear fractions, that is the [ 1, l] 
PadC approximant of type II, to the determination of two-body and three-body 
bound states. 

Continued fractions and rational functions have appeared in many approaches to 
equation solving. The location of the zeros of a function by the method of continued 
fractions is described by Frame [5] and the references he cites. This approach 
utilizes the derivatives of the function, so it is not too useful for functions that are 
only known numerically. Jarratt and Nudds [3] present a rational function, or 
PadC approximate, approach to equation solving which uses the numerical values 
of the function itself. Swalen and Pierce [6] found the eigenvalues of tridiagonal 
matrices by continued fractions, while Lovelace and Masson [7] used continued 
fractions and recursion relations to determine the Regge poles of various potentials. 
Their procedure involves series expansions of the quantities occurring in the 
radial Schrodinger equation and is suitable for locating bound states. Vescelius 
and Neff [8] show how continued fractions aid in handling various polynomial 
potentials in the one-dimensional Schrbdinger equation. 

The present method involves the [l, l] PadC approximate of type II [3,4]. Let 

F(z) = a, + qz 
1 + b,z 

define a representation of the actual function F. The three unknowns a,, u1 , and bl 
are found by solving the set of three simultaneous linear equations that arise when 
F(z) is known for three values of z. The current interest is in poles, so the first trial 
z, z, , is obtained from 

1 + blz4 = 0. (2) 
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The actual function F is evaluated at z, and then z, , z, , and z, are used to generate 
new aa, a,, and 6, and, hence, zg through Eq. (2). The process continues until the 
zi converge. This type of rational interpolation is particularly easy to use since 
each successive trial z comes from the solution of a linear equation. 

We now show how Eqs. (1) and (2) are used in locating few-body bound states. 
We consider the two-body problem first. 

In the two-body problem, F(z)is identified with the scattering amplitudet(q, q, E), 
where q is a fixed momentum. The Lippmann-Schwinger equation [2] 

t(p, q, E) = V(p, q) + irn dK K2 v(p;;;St~9;; E, , (3) 
0 

is solved by linear equation methods at the desired values of E = -fi2q,2/2m. 
Here, m is the reduced mass. The integral is replaced by a finite sum through the 
use of a 28-point Gaussian quadrature rule. The variable p is then set equal to the 
value of each of the integration sample points. For each p an equation with 
28 unknowns, t(K, , q, E), is generated. Hence, the 28 values of p lead to a set of 
28 inhomogeneous linear equations in 28 unknowns, which is solved by Gaussian 
elimination with iterative improvement. 

Several Y-wave nucleon-nucleon potentials with from one to three Yukawa 
potentials were studied. These cases provided the basis for the general comments 
which follow. Two numerical examples are then introduced. The sequence of 
trial E’s converges very quickly if the initial energies bracketed the bound state. 
In these cases three or less trial E’s, beyond the three starting energies, are usually 
sufficient. This is fewer than the secant method [9] requires and is in agreement with 
the finding of Jarratt and Nudds [3] that linear fractions converge quicker. In 
both cases, the last E is such that the matrix element t(q, q, E) is at least lo* in 
magnitude. When the initial energies are further away from the bound state, a 
few more iterations are required. Two examples are presented in Tables I and II. 
These illustrate the rate of convergence of the linear fraction method and the secant 
method. The potential is the two-term Yukawa potential of Coester and Yen, with 
the parameters given by Stern [lo], 

V(r) = -1761.65 exp(-2.307r)/r + 7046.6 exp(-4.614r)/r. 

V(r) is in MeV while r is in fermis. 

(4) 

Sometimes a problem arises when the initial energies are all two or three orders 
of magnitude away from the bound state. A positive trial energy is predicted by 
Eq. (2), but this is not desirable since different methods are needed to solve Eq. (3) 
when the energy is positive. So ad hoc schemes are needed to generate a negative 
trial E. For example, a sequence of negative trial E’s, each twice the previous, is 
tried until the root is bracketed. But once this occurs, rapid convergence is observed. 



A NUMERICAL AIDE IN THE LOCATION 563 

TABLE I 

Comparison of the Convergence to a Two-Body Bound State 

Secant method 
Energy (MeV) Amplitude* (fermis) 

Pade method 
Energy (MeV) Amplitudti (fermis) 

-25.00 -0.29134 + 01 

-6.0” -0.77901 + 01 -6.0” -0.77901 + 01 

-1.0” +0.12401 + 02 -1.W +0.12401 + 02 

-2.92904 -0.30419 + 02 -2.43424 -0.93584 + 02 

-2.37036 -0.13183 + 03 -2.22812 -0.21748 + 04 
-2.20278 +0.11855 + 04 -2.21919 - 

-2.21955 -0.48947 + 05 
-2.21915 - 

a Initial energy. 
b Amplitude is the matrix element r(0.17819-02, 0.17819-02, E). 

TABLE II 

Convergence to a Two-Body Bound State with the Pad& Method 

Energy (MeV) Amplitude* (fermis) 

-15.00 -0.37652 + 01 

- 10.0” -0.49104 + 01 

-5.0” -0.97298 + 01 

- 1.88320 +0.54698 + 02 

-2.24482 -0.76171 + 03 

-2.21935 -0.10174 + 06 
-2.21916 - 

0 Initial energy. 
* Amplitude is the matrix element t(0.17819-02, 0.17819-02, E). 

In general, some cases are expected where convergence will not occur so quickly, 
even though the bound state is bracketed. Some remedies for this situation are 
discussed by Chien [I I]. 

The Faddeev-Lovelace equations [12] are a set of coupled integral equations 
which provide a description of the three-body problem. When the three bodies are 
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all spinless bosons and only relative Y-states are considered, the Faddeev- 
Lovelace equations become an integral equation with two continuous variables 
of integration. A convenient method for solving this equation is by iteration of 
the integral equation [13]. The present calculations are based on an integral 
equation [14] which differs somewhat from that given by Mallliet and Tjon [13]. 
The integral equation is iterated 16 times so that a series is generated for a given 
matrix element. This series diverges when the three-body energy is less in magnitude 
than the deepest bound-state’s energy and this divergence is overcome by using 
PadC approximants to sum the series [14, 151. Hence, the values of the matrix 
element which go into the determination of the coefficients in Eq. (1) come from 
an independent application of Pad6 approximants. 

The bound state is located with the same economy of trial energies as in the two- 
body problem. Table III presents an example in which the two-body potential is 

TABLE III 

Convergence to a Three-Body Bound State with the Pad& Method 

Energy (MeV) Matrix element Ratio 

-20.735” -0.6524 + 01 1.68118 

- 12.441” -0.1355 + 02 I .37743 

-6.2205” -0.6892 + 02 1.09937 

-4.69399 -0.4840 + 03 1.01640 

-4.43190 -0.7390 + 04 1.00110 

-4.41323 m -0.1400 f 07 l.OOOOO 

a Initial energy. 

a square well with a depth of 24.0 MeV and a range of 2.0719 fermis. The column 
labeled “ratio” is the asymptotic inverse ratio of successive terms in the series 
expansion of the matrix element. As discussed in Malfliet and Tjon [ 131, the deepest 
bound-state occurs when the ratio is 1.0. 

In conclusion, the [ 1, l] Padt approximant of type II is an efficient aid in locating 
few-body bound states. Tables I-III display rates of convergence which are roughly 
consistent with the predicted rate of Jarratt and Nudds [3]. The use of this linear 
fraction method in the three-body problem promises a substantial savings of 
computer time, since the solution of a three-body integral equation is quite 
involved. With this in mind, it is natural to ask if the use of higher-order rational- 
function approximations would be still more useful in the three-body problem. 
Jarratt and Nudds [3] show that there is some gain in the rate of convergence for 
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the higher-order approaches, but this gain is balanced by the increased number of 
initial energies that are needed. That is, the three-body problem must be solved 
more times before the first trial energy is generated. If in specific cases, the number 
of trial energies that are required to achieve convergence exceeds the number used 
in the examples presented here, then higher-order approaches may be worthwhile. 

A comment on the Newton-Raphson method for finding zeroes is also 
appropriate, since this method has been found to be very useful for finding the 
eigenvalues of the two-body SchrSdinger equation [l, 161. The Newton-Raphson 
method involves the derivative, so if Eq. (3) is used 

& 0, 4, El = ah 4, a 

is required. When the potential is energy-independent, t’(p, q, E) is easily obtained 
from the solution of Eq. (3) at energy E via an integration. However, if the potential 
is energy-dependent, then several one-dimensional integrals and a double-integral 
must be done. These additional integrals involve the derivative of the potential 
matrix element with energy. Unfortunately, the three-body problem is analogous 
to a two-body problem with energy-dependent potentials [12]. In addition, each 
single-variable integral is replaced by a double-integral in the three-body problem. 
These factors indicate that the linear-fraction method involves less work than the 
Newton-Raphson method for the three-body problem. 
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